Structure of the N-WASP EVH1 Domain-WIP Complex Insight into the Molecular Basis of Wiskott-Aldrich Syndrome

نویسندگان

  • Brian F. Volkman
  • Kenneth E. Prehoda
  • Jessica A. Scott
  • Francis C. Peterson
  • Wendell A. Lim
چکیده

Missense mutants that cause the immune disorder Wiskott-Aldrich Syndrome (WAS) map primarily to the Enabled/VASP homology 1 (EVH1) domain of the actin regulatory protein WASP. This domain has been implicated in both peptide and phospholipid binding. We show here that the N-WASP EVH1 domain does not bind phosphatidyl inositol-(4,5)-bisphosphate, as previously reported, but does specifically bind a 25 residue motif from the WASP Interacting Protein (WIP). The NMR structure of the complex reveals a novel recognition mechanism-the WIP ligand, which is far longer than canonical EVH1 ligands, wraps around the domain, contacting a narrow but extended surface. This recognition mechanism provides a basis for understanding the effects of mutations that cause WAS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disease-associated missense mutations in the EVH1 domain disrupt intrinsic WASp function causing dysregulated actin dynamics and impaired dendritic cell migration.

Wiskott Aldrich syndrome (WAS), an X-linked immunodeficiency, results from loss-of-function mutations in the human hematopoietic cytoskeletal regulator gene WAS. Many missense mutations in the Ena Vasp homology1 (EVH1) domain preserve low-level WAS protein (WASp) expression and confer a milder clinical phenotype. Although disrupted binding to WASp-interacting protein (WIP) leads to enhanced WAS...

متن کامل

Multiple WASP-interacting protein recognition motifs are required for a functional interaction with N-WASP.

The WASP-interacting protein (WIP) targets WASP/WAVE proteins through a constitutive interaction with an amino-terminal enabled/VASP homology (EVH1) domain. Parallel investigations had previously identified two distinct N-WASP binding motifs corresponding to WIP residues 451-461 and 461-485, and we determined the structure of a complex between WIP-(461-485) and the N-WASP EVH1 domain (Volkman, ...

متن کامل

Requirement for a complex of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein in podosome formation in macrophages.

Chemotactic migration of macrophages is critical for the recruitment of leukocytes to inflamed tissues. Macrophages use a specialized adhesive structure called a podosome to migrate. Podosome formation requires the Wiskott-Aldrich syndrome protein (WASP), which is a product of the gene defective in an X-linked inherited immunodeficiency disorder, the Wiskott-Aldrich syndrome. Macrophages from W...

متن کامل

The WH1 and EVH1 Domains of WASP and Ena/VASP Family Members Bind Distinct Sequence Motifs

A complex of N-WASP and WASP-interacting protein (WIP) plays an important role in actin-based motility of vaccinia virus and the formation of filopodia. WIP is also required to maintain the integrity of the actin cytoskeleton in T and B lymphocytes and is essential for T cell activation. However, in contrast to many other N-WASP binding proteins, WIP does not stimulate the ability of N-WASP to ...

متن کامل

Cutting edge: WIP, a binding partner for Wiskott-Aldrich syndrome protein, cooperates with Vav in the regulation of T cell activation.

Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP), specifically binds to a region of WASp that is frequently mutated in Wiskott-Aldrich syndrome. Due to the similar phenotypes of WASp- and Vav-deficient T cells, and the putative importance of the WIP/WASp complex in mediating normal signals from the TCR, we investigated the role of WIP in regulating NF-AT/AP-1-mediated gene tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2002